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In solving certain problems of the theory of vibrations of spherical shells it is more con- 

venient to calculate not the associated Legendre functions f’,,m (eos 0) and their deri- 
vatives themselves but rather the logarithmic derivatives 

d 
Fql” (cos 0) 2 x [In 1 ‘TLm 

d 
(cos 0)] = x i’nm (cos 6) / onm (cos 0) 

We consider the case 6 = n / 2, when it is possible to calculate the logarithmic deri- 

vative of Pnrn (COS 9), where n = u + iz is an arbitrary complex number, without the use 

of hypergeometric series. Using the well known expressions for the function P*” (0) and 
its first derivative in terms of the gamma function [lf, we obtain 

F,,” (0) =I - 2 1 (i + a,) I‘ (1 + t_) 
r (l/2 + 1,) r (l/2 _c 1_) h (IS)> 

nS_m 
l,t: = T (1) 

In what follows we shall need to disting~sh the cases co~es~nding to odd or even 

values for the order m of the function p,,m (0) . We shall make repeated application 
of the recursion formula F (Z + 1) = zr (z) to each of the gamma functions appearing 

in the expression (1) ; we also take into account the relation [2] 

After a number of operations are carried out the resulting expressions for the logarithmic 
derivatives of P,m (0) are found to be 

FTZrn (0) = As ‘ii B, 1 f1 B, (odd ‘4 
s=1,3,5,... fC=1,3,6,... k=2,4,5,... 

(2) 

Fnm (0) == - p fi + fi B, j IJlr B, (even m) 

.X=8*4,6,... !i=Z*1,6,... /i=1,3,.5.... 

Ls = 
*’ - s (s - 1) 

1’ - (s - 1) (s - 2) ’ U,=l- Q&*) * 1’ = I1 (/I + 1) 

Keeping the degree n the same but letting the order IH vary, we can calculate the 
functions Fnrn (0) from the recursion formulas 

F,m+’ (0) = [m (no + 1) -p] /E,” (0), F; t2 (0) = Ani2F; (0~ 

To derive an asymptotic expression for 1?, 7fi(cos 0) for large values of 7 and arbitrary 
angle 13 we use a trigonometric expansion of the associated Legendre functions [ 11. 
Assuming the quantity z to be so large that sh z6 z chr9 z ertaq we obtain the asymp- 
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0l-l logarithmic derivatives of the associated Legendre functions 

totic formulas (a, B and cpO are real) 

Pnm (eos 0) ‘=: “Tz (cos (To - p) - i sin (fp0 - fi)] 

cL + iB = In [E (n + m + 1) / I? (n + 3/,)1 
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(3) 

From the formulas (3) it follows that 

f+,m fcos 9) s z - ‘I, ctg 0 - i (If -i- ‘12) 

Thus for large z the logarithmic derivatives of the associated Legendre functions are 

practically independent of the order m. 
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